
Network Embedding



Facebook Friendship Network



Twitter Followers’ Network



Hashtag Co-occurence Network



Protein-Protein Interaction Network



Co-Authorship Network



What is Network Embedding?

Suppose G(V,E) represents a network then Network Embedding refers to generating low

dimensional network features corresponding to Nodes, Edges, Substructures, and the

Whole-Graph.
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Node Embedding

Find embedding of nodes to d-dimensions so that “similar” nodes in the 

graph have embeddings that are close together.



Node Embedding

Goal is to learn an encoding matrix so that similarity of nodes in the embedding 

space approximates similarity in the original network.



Node Embedding

Embedding



Node Embedding

Nodes closer in the original network should also be closer in the embedding space



Many ways of Learning Z

1. Matrix Factorization

2. Neural Network
1. DeepWalk

2. Node2Vec

3. GNN

4. GCN



Matrix Similarity based

Let us assume that A is a matrix representing the network (say 

adjacency matrix)

Learn the matrix Z so that the loss function is minimum.



Let us assume that A is a matrix representing the network (say 

adjacency matrix)

Learn the matrix Z so that the loss function is minimum.

• Stochastic gradient descent (SGD)
• Low Rank Matrix Factorization (PCA, LSI)

Matrix Similarity based



Let us assume that A is a matrix representing the network (say 

adjacency matrix)

Learn the matrix Z so that the loss function is minimum.

• Stochastic gradient descent (SGD)
• Low Rank Matrix Factorization

Any derived matrix

Matrix Similarity based



Random Walk

• DeepWalk: Just run fixed-length, unbiased random walks starting 
from each node

• Node2Vec: Use flexible, biased random walks that can trade off 
between local and global views of the network.



DeepWalk – unbiased RW

Generate RW node sequence
17, 6, 11, 1, 13
17, 6, 7  , 5, 1
1,   2, 20,  34, 10
…..

Apply skip-gram to generate 
the embedding
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ABSTRACT

Prediction tasks over nodes and edges in networks require careful
effort in engineering features for learning algorithms. Recent re-

search in thebroader field of representation learning has led to sig-
nificant progress in automating prediction by learning the features

themselves. However, present approaches are largely insensitive to
local patterns unique to networks.

Herewepropose node2vec, an algorithmic framework for learn-
ing feature representations for nodes in networks. In node2vec, we

learn a mapping of nodes to a low-dimensional space of features
that maximizes the likelihood of preserving distances between net-

work neighborhoods of nodes. Wedefineaflexiblenotion of node’s
network neighborhood and design a biased random walk proce-

dure, which efficiently exploresdiverseneighborhoods and leadsto
rich feature representations. Our algorithm generalizes prior work
which is based on rigid notions of network neighborhoods and we

demonstrate that the added flexibility in exploring neighborhoods
is the key to learning richer representations.

We demonstrate the efficacy of node2vec over existing state-
of-the-art techniques on multi-label classification and link predic-

tion in several real-world networks from diverse domains. Taken
together, our work represents a new way for efficiently learning

state-of-the-art task-independent node representations in complex
networks.

Categor ies and Subject Descr iptors: H.2.8 [Database Manage-

ment]: Database applications—Data mining; I.2.6 [Ar tificial In-
telligence]: Learning

General Terms: Algorithms; Experimentation.

Keywords: Information networks, Feature learning, Node embed-

dings.

1. INTRODUCTION
Many important tasks in network analysis involve some kind of

prediction over nodes and edges. In a typical node classification
task, we are interested in predicting the most probable labels of

nodes in a network [9, 38]. For example, in a social network, we
might be interested in predicting interests of users, or in a protein-

protein interaction network we might be interested in predicting
functional labels of proteins [29, 43]. Similarly, in link prediction,
we wish to predict whether a pair of nodes in a network should

have an edge connecting them [20]. Link prediction is useful in
a wide variety of domains, for instance, in genomics, it helps us

discover novel interactions between genes and in social networks,
it can identify real-world friends [2, 39].

Any supervised machine learning algorithm requires a set of in-
put features. In prediction problems on networks this means that

one has to construct a feature vector representation for the nodes
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Figure1: BFS and DFS search strategies from node u (k = 3).

and edges. A typical solution involves hand-engineering domain-
specific features based on expert knowledge. Even if onediscounts

the tedious work of feature engineering, such features are usually
designed for specific tasks and do not generalize across different

prediction tasks.
An alternative approach is to use data to learn feature represen-

tations themselves [4]. The challenge in feature learning is defin-
ing an objective function, which involves a trade-off in balancing
computational efficiency and predictive accuracy. On one side of

thespectrum, onecould directly aim to findafeaturerepresentation
that optimizesperformanceof adownstream prediction task. While

this supervised procedure results in good accuracy, it comes at the
cost of high training timecomplexity dueto ablowup in thenumber

of parameters that need to be estimated. At the other extreme, the
objective function can be defined to be independent of the down-

stream prediction task and the representation can be learned in a
purely unsupervised way. This makes the optimization computa-

tionally efficient and with a carefully designed objective, it results
in task-independent features that match task-specific approaches in

predictiveaccuracy [25, 27].
However, current techniques fail to satisfactorily defineand opti-

mizeareasonable objectiverequired for scalableunsupervised fea-
ture learning in networks. Classic approaches based on linear and

non-linear dimensionality reduction techniques such as Principal
Component Analysis, Multi-Dimensional Scaling and their exten-

sions [3, 31, 35, 41] invariably involve eigendecomposition of a
representative data matrix which is expensive for large real-world

networks. Moreover, the resulting latent representations give poor
performance on various prediction tasks over networks.

Neural networksprovidean alternativeapproach to unsupervised
feature learning [15]. Recent attempts in this direction [28, 32]
propose efficient algorithms but are largely insensitive to patterns

unique to networks. Specifically, nodes in networks could be or-
ganized based on communities they belong to (i.e., homophily); in

other cases, the organization could be based on the structural roles
of nodes in the network (i.e., structural equivalence) [7, 11, 40,

42]. For instance, in Figure 1, we observe nodes u and s1 belong-
ing to thesamecommunity exhibit homophily, while thehub nodes

u and s6 in the two communities are structurally equivalent. Real-

Node2vec - Biased RW

Interpolating BFS and DFS

𝑁𝐵𝐹𝑆 𝑢 = { 𝑠1, 𝑠2, 𝑠3}

𝑁𝐷𝐹𝑆 𝑢 = { 𝑠4, 𝑠5, 𝑠6}



• 𝑝, 𝑞 model transition probabilities
• 𝑝 … return parameter

• 𝑞 … ”walk away” parameter

Node2vec: two parameters

Generate RW node sequence
17, 6, 11, 1, 13
17, 6,7  , 5, 1
1,2, 20,34, 10
…..

Apply skip-gram to generate 
the embedding



• 𝑝, 𝑞 model transition probabilities
• 𝑝 … return parameter

• 𝑞 … ”walk away” parameter

Node2vec: two parameters

17, 6, 11, 1, 13
17, 6,7  , 5, 1
1,2, 20,34, 10
…..

Apply skip-gram to generate 
the embedding


